
75

Chapter 4

4.Creating and Growing Filesystems

This chapter describes the procedures you must perform to create or grow (increase the
size of) XFS and EFS filesystems or to convert from an EFS filesystem to an XFS
filesystem.

The major sections in this chapter are:

• “Planning for XFS Filesystems” on page 75

• “Making an XFS Filesystem” on page 82

• “Making an EFS Filesystem” on page 84

• “Making a Filesystem From inst” on page 85

• “Growing an XFS Filesystem Onto Another Disk” on page 86

• “Growing an EFS Filesystem Onto Another Disk” on page 87

• “Converting Filesystems on the System Disk From EFS to XFS” on page 89

• “Converting a Filesystem on an Option Disk From EFS to XFS” on page 96

Planning for XFS Filesystems

The following subsections discuss preparation for and choices you must make when
creating an XFS filesystem. Each time you plan to make an XFS filesystem or convert a
filesystem from EFS to XFS, review each section and make any necessary preparations.

Prerequisite Software

The subsystem eoe.sw.xfs is required to use XFS filesystems.

If you are converting the Root and Usr filesystems to XFS, you must have software
distribution CDs or access to a remote distribution directory for IRIX Release 6.2 or later.

76

Chapter 4: Creating and Growing Filesystems

Choosing the Filesystem Block Size and Extent Size

XFS allows you to choose the logical block size for each filesystem. (Physical disk blocks
remain 512 bytes. EFS has a fixed block size of 512 bytes.) If you use a real-time
subvolume on an XLV logical volume, you must also choose the extent size. The extent
size is the amount of space that is allocated to a file every time more space needs to be
allocated to it.

For XFS filesystems on disk partitions and logical volumes and for the data subvolume
of filesystems on XLV volumes, the block size guidelines are:

• The minimum block size is 512 bytes. Small block sizes increase allocation overhead
which decreases filesystem performance, but in general, the recommended block
size for filesystems under 100 MB and for filesystems with many small files is 512
bytes.

• The default block size is 4096 bytes (4K). This is the recommended block size for
filesystems over 100 MB.

• The maximum block size is 65536 bytes (64K). Because large block sizes can waste
space and lead to fragmentation, in general block sizes shouldn’t be larger than 4096
bytes (4K).

• For the Root filesystem on systems with separate Root and Usr filesystems, the
recommended block size is 512 bytes.

• For news servers, the recommended block size for the news filesystems is 2048
bytes.

Block sizes are specified in bytes in decimal (default), octal (prefixed by 0), or
hexadecimal (prefixed by 0x or 0X). If the number has the suffix “k,” it is multiplied by
1024. If the number has the suffix “m,” it is multiplied by 1048576 (1024 * 1024).

For real-time subvolumes of XLV logical volumes, the block size is the same as the block
size of the data subvolume. The guidelines for the extent size are:

• The extent size must be a multiple of the block size of the data subvolume.

• The minimum extent size is 4 KB.

• The maximum extent size is 1 GB.

• The default extent size is 64 KB.

• The extent size should be matched to the application and the stripe unit of the
volume elements used in the real-time subvolume.

Planning for XFS Filesystems

77

Choosing the Log Type and Size

Each XFS filesystem has a log that contains filesystem journaling records. This log
requires dedicated disk space. This disk space doesn’t show up in listings from the df
command, nor can you access it with a filename.

The location of the disk space depends on the type of log you choose. The two types of
logs are:

External When an XFS filesystem is created on an XLV logical volume and log
records are put into a log subvolume, the log is called an external log. The
log subvolume is one or more disk partitions dedicated to the log
exclusively.

Internal When an XFS filesystem is created on a disk partition or XLV logical
volume, or when it is created on an XLV logical volume that doesn’t
have a log subvolume, log records are put into a dedicated portion of the
disk partition (or data subvolume) that contains user files. This type of
log is called an internal log.

The guidelines for choosing the log type are:

• If you want the log and the data subvolume to be on different partitions or to use
different subvolume configurations for them, use an external log.

• If you want the log subvolume to be striped independently from the data subvolume
(see the section “Volume Elements” in Chapter 6 for an explanation of striping), you
must use an external log.

• If you are making the XFS filesystem on a disk partition (rather than on an XLV
logical volume), you must use an internal log.

• If you are making the XFS filesystem on an XLV logical volume that has no log
subvolume, you must use an internal log.

• If you are making the XFS filesystem on an XLV logical volume that has a log
subvolume, you must use an external log.

For more information about XLV and log subvolumes, see the section “XLV Logical
Volumes” in Chapter 6.

78

Chapter 4: Creating and Growing Filesystems

The amount of disk space needed for the log is a function of how the filesystem is used.
The amount of disk space required for log records is proportional to the transaction rate
and the size of transactions on the filesystem, not the size of the filesystem. Larger block
sizes result in larger transactions. Transactions from directory updates (for example, the
mkdir and rmdir commands and the create() and unlink() system calls) cause more log
data to be generated.

You must choose the amount of disk space to dedicate to the log (called the log size). The
minimum log size is 512 blocks. The typical log size is 1000 blocks. For filesystems with
very high transaction activity, a larger log size of 2000 blocks is recommended.

For external logs, the size of the log is the same as the size of the log subvolume. The log
subvolume is one or more disk partitions. You may find that you need to repartition a
disk to create a properly sized log subvolume (see the section “Disk Repartitioning” in
this chapter). For external logs, the size of the log is set when you create the log
subvolume with the xlv_make command.

For internal logs, the size of the log is specified when you create the filesystem with the
mkfs command.

The log size is specified in bytes as described in the section “Choosing the Filesystem
Block Size and Extent Size” in this chapter or as a multiple of the filesystem block size by
using the suffix “b.”

Checking for Adequate Free Disk Space

XFS filesystems may require more disk space than EFS filesystems for the same files. This
extra disk space is required to accommodate the XFS log and as a result of block sizes
larger than EFS’s 512 bytes. However, XFS represents free space more compactly, on
average, and the inodes are allocated dynamically by XFS, which can result in less disk
space usage.

Planning for XFS Filesystems

79

This procedure can be used to get a rough idea of the amount of free disk space that will
remain after a filesystem is converted to XFS:

1. Get the size in kilobytes of the filesystem to be converted and round the result to the
next megabyte. For example,

df -k

Filesystem Type kbytes use avail %use Mounted on

/dev/root efs 969857 663306 306551 68% /

This filesystem is 969857 KB, which rounds up to 970 MB.

2. If you plan to use an internal log (see the section “Choosing the Log Type and Size”
in this chapter), give this command to get an estimate of the disk space required for
the files in the filesystem after conversion:

% xfs_estimate -i logsize -b blocksize mountpoint

logsize is the size of the log. blocksize is the block size you chose for user files in the
section “Choosing the Filesystem Block Size and Extent Size” in this chapter.
mountpoint is the directory that is the mount point for the filesystem. For example,

% xfs_estimate -i 1m -b 4096 /

/ will take about 747 megabytes

The output of this command tells you how much disk space the files in the
filesystem (with a blocksize of 4096 bytes) and an internal log of size logsize will take
after conversion to XFS.

3. If you plan to use an external log, give this command to get an estimate of the disk
space required for the files in the filesystem after conversion:

% xfs_estimate -e 0 -b blocksize mountpoint

blocksize is the block size you chose for user files in the section “Choosing the
Filesystem Block Size and Extent Size” in this chapter. mountpoint is the directory
that is the mount point for the filesystem. For example,

% xfs_estimate -e 0 -b 4096 /

/ will take about 746 megabytes

 with the external log using 0 blocks or about 1 megabytes

The first line of output from xfs_estimate tells you how much disk space the files in
the filesystem will take after conversion to XFS. In addition to this, you will need
disk space on a different disk partition for the external log. You should ignore the
second line of output.

80

Chapter 4: Creating and Growing Filesystems

4. Compare the size of the filesystem from step 1 with the size of the files from step 2
or step 3. For example,

970 MB - 747 MB = 223 MB free disk space

747 MB / 970 MB = 77% full

Use this information to decide if there will be an adequate amount of free disk space
if this filesystem is converted to XFS.

If the amount of free disk space after conversion is not adequate, some options to
consider are:

• Implement the usual solutions for inadequate disk space: remove unnecessary files,
archive files to tape, move files to another filesystem, add another disk, and so on.

• Repartition the disk to increase size of the disk partition for the filesystem.

• If there isn’t sufficient disk space in the Root filesystem and you have separate Root
and Usr filesystems, switch to combined Root and Usr filesystems on a single disk
partition.

• If the filesystem is on an lv logical volume or an XLV logical volume, increase the
size of the volume.

• Create an XLV logical volume with a log subvolume elsewhere, so that all of the
disk space can be used for user files.

Disk Repartitioning

Many system administrators may find that they want or need to repartition disks when
they switch to XFS filesystems and/or XLV logical volumes. Some of the reasons to
consider repartitioning are:

• If the system disk has separate partitions for Root and Usr filesystems, the Root
filesystem may be running out of space. Repartitioning is a way to increase the
space in Root (at the expense of the size of Usr) or to solve the problem by
combining Root and Usr into a single partition.

• System administration is a little easier on systems with combined Root and Usr
filesystems.

• If you plan to use XLV logical volumes, you may want to put the XFS log into a
small subvolume. This requires disk repartitioning to create a small partition for the
log subvolume.

Planning for XFS Filesystems

81

• If you plan to use XLV logical volumes, you may want to repartition to create disk
partitions of equal size that can be striped or plexed.

Disk partitions are discussed in Chapter 1, “Disk Concepts,” and using fx to repartition
disks is explained in the section “Repartitioning a Disk With fx” in Chapter 2.

Dump and Restore Requirements

The filesystem conversion procedures in the sections “Converting Filesystems on the
System Disk From EFS to XFS” and “Converting a Filesystem on an Option Disk From
EFS to XFS” in this chapter require that you dump the filesystems you plan to convert to
tape or to another disk with sufficient free disk space to contain the dump image.
Dumping to disk is substantially faster than dumping to tape.

When you convert a system disk, you must use the dump and restore commands. When
you convert a filesystem on an option disk, you can use any backup and restore
commands.

If you dump to a tape drive, follow these guidelines:

• Have sufficient tapes available for dumping the filesystems to be converted.

• If you are converting filesystems on a system disk, the tape drive must be local.

• If you are converting filesystems on option disks, the tape drive can be local or
remote.

The requirements for dumping to a different filesystem are:

• The filesystem being converted must have 2 GB or less in use (the maximum size of
the dump image file on an EFS filesystem) unless it is being dumped to an XFS
filesystem.

• The filesystem that will contain the dump must have sufficient disk space available
to hold the filesystems to be converted.

• If you are converting filesystems on a system disk, the filesystem where you place
the dump must be local to the system.

• If you are converting filesystems on option disks, the filesystem you dump to can be
local or remote.

82

Chapter 4: Creating and Growing Filesystems

Making an XFS Filesystem

This section explains how to create an XFS filesystem on an empty disk partition or XLV
logical volume. (For information about creating XLV logical volumes, see Chapter 7,
“Creating and Administering XLV Logical Volumes.”)

Tip: You can make an XFS filesystem on a disk partition or a logical volume using the
graphical user interface of the xfsm command. For information, see its online help.

Caution: When you create a filesystem, all files already on the disk partition or logical
volume are destroyed.

1. Review the subsections within the section “Planning for XFS Filesystems” in this
chapter to verify that you are ready to begin this procedure.

2. Identify the device name of the partition or logical volume where you plan to create
the filesystem. This is the value of partition in the examples below. For example, if
you plan to use partition 7 (the entire disk) of a SCSI option disk on controller 0 and
drive address 2, partition is /dev/dsk/dks0d2s7. For more information on determining
partition, see Table 1-4, the section “Introduction to Logical Volumes” in Chapter 6,
and the dks(7M) reference page.

3. If the disk partition is already mounted, unmount it:

umount partition

Any data that is on the disk partition is destroyed (to convert the data rather than
destroy it, use the procedure in the section “Converting a Filesystem on an Option
Disk From EFS to XFS” in this chapter instead).

4. If you are making a filesystem on a disk partition or on an XLV logical volume that
doesn’t have a log subvolume, use this mkfs command to create the new XFS
filesystem:

mkfs -b size=blocksize -l size=logsize partition

blocksize is the filesystem block size (see the section “Choosing the Filesystem Block
Size and Extent Size” in this chapter) and logsize is the size of the area dedicated to
log records (see the section “Choosing the Log Type and Size” in this chapter). The
default values are 4 KB blocks and a 1000 block log.

Example 4-1 shows the command line used to create an XFS filesystem and the
system output. The filesystem has a 10 MB internal log and a block size of 1K bytes
and is on the partition /dev/dsk/dks0d2s7.

Making an XFS Filesystem

83

Example 4-1 mkfs Command for an XFS Filesystem With an Internal
Log

mkfs -b size=1k -l size=10m /dev/dsk/dks0d2s7

meta-data=/dev/dsk/dks0d2s7 isize=256 agcount=8, agsize=128615 blks

data = bsize=1024 blocks=1028916

log =internal log bsize=1024 blocks=10240

realtime =none bsize=65536 blocks=0, rtextents=0

5. If you are making a filesystem on an XLV logical volume that has a log subvolume
(for an external log), use this mkfs command to make the new XFS filesystem:

mkfs -b size=blocksize volume

blocksize is the block size for filesystem (see the section “Choosing the Filesystem
Block Size and Extent Size” in this chapter), and volume is the device name for the
volume.

Example 4-2 shows the command line used to create an XFS filesystem on a logical
volume /dev/dsk/xlv/a with a block size of 1K bytes and the system output.

Example 4-2 mkfs Command for an XFS Filesystem With an External
Log

mkfs -b size=1k /dev/dsk/xlv/a

meta-data=/dev/dsk/xlv/a isize=256 agcount=8, agsize=245530 blks

data = bsize=1024 blocks=1964240

log =volume log bsize=1024 blocks=25326

realtime =none bsize=65536 blocks=0, rtextents=0

Example 4-3 shows the command line used to create an XFS filesystem on a logical
volume /dev/dsk/xlv/xlv_data1 that includes a log, data, and real-time subvolumes
and the system output. The default block size of 4096 bytes is used and the real-time
extent size is set to 128K bytes.

Example 4-3 mkfs Command for an XFS Filesystem With a Real-Time Subvolume

mkfs_xfs -r extsize=128k /dev/rdsk/xlv/xlv_data1

meta-data=/dev/rdsk/xlv/xlv_data1 isize=256 agcount=8, agsize=4300 blks

data = bsize=4096 blocks=34400

log =volume log bsize=4096 blocks=34400

realtime =volume rt bsize=131072 blocks=2560, rtextents=80

6. To use the filesystem, you must mount it. For example:

mkdir mountdir
mount partition mountdir

84

Chapter 4: Creating and Growing Filesystems

For more information about mounting filesystems, see the section “Manually
Mounting Filesystems” in Chapter 5.

7. To configure the system so that the new filesystem is automatically mounted when
the system is booted, add this line to the file /etc/fstab:

partition mountdir xfs rw,raw=rawpartition 0 0

where rawpartition is the raw version of partition. For example, if partition is
/dev/dsk/dks0d2s7, rawpartition is /dev/rdsk/dks0d2s7.

For more information about automatically mounting filesystems, see the section
“Mounting Filesystems Automatically With the /etc/fstab File” in Chapter 5.

Making an EFS Filesystem

The procedure in this section explains how to make a filesystem on a disk partition or on
a logical volume and mount it. (See From or Chapter 8, “Creating and Administering lv
Logical Volumes,” for information on creating logical volumes.) This procedure assumes
that the disk or logical volume is empty. If it contains valuable data, the data must be
backed up because it is destroyed during this procedure.

Tip: You can make an EFS filesystem on a disk partition using the Disk Manager in the
System Toolchest. For information, see the section “Formatting, Verifying, and Remaking
Filesystems on a Fixed Disk” in Chapter 6 of the Personal System Administration Guide.

Caution: When you create a filesystem, all files already on the disk partition or logical
volume are destroyed.

1. Identify the device name of the partition or logical volume where you plan to create
the filesystem. This is the value of partition in the examples below. For example, if
you plan to use partition 7 (the entire disk) of a SCSI option disk on controller 0 and
drive address 2, partition is /dev/dsk/dks0d2s7. For more information on determining
partition, see Table 1-4, the section “Introduction to Logical Volumes” in Chapter 6,
and the dks(7M) reference page.

2. If the disk partition is already mounted, unmount it:

umount partition

Any data that is on the disk partition is destroyed (to convert the data rather than
destroy it, use the procedure in the section “Converting a Filesystem on an Option
Disk From EFS to XFS” in this chapter instead).

Making a Filesystem From inst

85

3. Create a new filesystem with the mkfs command, for example,

mkfs -t efs /dev/rdsk/dks0d2s7

The argument to mkfs is the block or character device for the disk partition or logical
volume. You can use either the block device or the character device.

In the above example, mkfs uses default values for the filesystem parameters. If you
want to use parameters other than the default, you can specify these on the mkfs
command line. See the mkfs_efs(1M) reference page for information about using
command line parameters and proto files.

4. To use the filesystem, you must mount it. For example,

mkdir /rsrch

mount /dev/dsk/dks0d2s7 /rsrch

For more information about mounting filesystems, see the section “Manually
Mounting Filesystems” in Chapter 5.

5. To configure the system so that this filesystem is automatically mounted when the
system is booted up, add an entry in the file /etc/fstab for the new filesystem. For
example,

/dev/dsk/dks0d2s7 /rsrch efs rw,raw=/dev/rdsk/dks0d2s7 0 0

For more information about automatically mounting filesystems, see the section
“Mounting Filesystems Automatically With the /etc/fstab File” in Chapter 5.

Making a Filesystem From inst

Caution: When you create a filesystem, all files already on the disk partition or logical
volume are destroyed.

mkfs can be used from within the inst command to make filesystems. To make the Root
or Usr filesystem on a system disk, you must use inst from the miniroot. There are two
ways to use mkfs:

• The mkfs command on the Administrative Command Menu. The mkfs command
uses default values for the mkfs command options. It chooses an EFS filesystem or
an XFS filesystem based on the answer to a prompt. With no argument, the mkfs

command makes the Root filesystem and, if a usr partition is present, a Usr
filesystem. Other filesystems can be made by giving a device file argument to mkfs.

86

Chapter 4: Creating and Growing Filesystems

• From a shell. Giving the mkfs command from a shell (give the command sh, not
shroot) enables you to specify the mkfs command line, including options.

For more information about making filesystems from inst, see the guide IRIX Admin:
Software Installation and Licensing.

Growing an XFS Filesystem Onto Another Disk

When growing an XFS filesystem onto another disk, there are two possibilities:

• The XFS filesystem is on a disk partition.

• The XFS filesystem is on an XLV logical volume.

If the XFS filesystem is on an XLV logical volume, the additional disk can be added to the
logical volume as an additional volume element. Instructions for doing this are in the
section “Adding a Volume Element to a Plex (Growing a Logical Volume)” in Chapter 7.

The following steps show how to grow a fictional /disk2 XFS filesystem onto an XLV
logical volume created out of the /disk2 disk partition and a new disk. The procedure
assumes that the new disk is installed on the system and partitioned.

Caution: All files on the additional disk are destroyed by this procedure.

1. Make a backup of the filesystem you are going to extend.

2. Unmount the /disk2 filesystem:

umount /disk2

3. Use xlv_make to create an XLV logical volume out of the /disk2 partition and the new
disk. The /disk2 partition must be the first volume element in the data subvolume.
For example:

xlv_make

xlv_make> vol xlv0

xlv0

xlv_make> data

xlv0.data

xlv_make> plex

xlv0.data.0

xlv_make> ve dks0d2s7

xlv0.data.0.0

xlv_make> ve dks0d3s7

Growing an EFS Filesystem Onto Another Disk

87

xlv0.data.0.1

xlv_make> end

Object specification completed

xlv_make> exit

Newly created objects will be written to disk.

Is this what you want?(yes) yes

Invoking xlv_assemble

4. Mount the /disk2 filesystem:

mount /dev/dsk/xlv/xlv0 /disk2

5. Grow the filesystem into the logical volume with the xfs_growfs command:

xfs_growfs /disk2

6. Change the entry for /disk2 in the file /etc/fstab to mount the logical volume rather
than the disk partition:

/dev/dsk/xlv/xlv0 /disk2 xfs rw,raw=/dev/rdsk/xlv/xlv0 0 0

Growing an EFS Filesystem Onto Another Disk

The following steps show how to grow a fictional /work EFS filesystem onto an lv logical
volume created out of the /work disk partition and a new disk. The procedure assumes
that the new disk is installed on the system and partitioned.

Caution: All files on the new disk are destroyed by this procedure.

1. Make a backup of the filesystem you are going to extend.

2. Place an entry in the file /etc/lvtab for the logical volume. The entry should look
something like this:

lv0:Project Volume:devs=/dev/dsk/dks0d2s7,/dev/dsk/dks0d3s7

An /etc/lvtab entry is made up of several colon-separated fields. In the above
example:

lv0 The device name of the logical volume. It must be lv followed by a
single digit.

Project Volume The volume label. This field is optional, but may be useful for
commands to verify the volume associated with the device.

88

Chapter 4: Creating and Growing Filesystems

devs=/dev/dsk/dks0d2s7,/dev/dsk/dks0d3s7
The disk partitions that make up the logical volume. The first
partition must be the existing partition.

This example shows a logical volume composed of two disk partitions, but it could
be made up of several partitions. The only limit is the maximum size of a filesystem,
8 GB. For more information on /etc/lvtab entries, see the section “Creating Entries in
the /etc/lvtab File” in Chapter 8. When using a logical volume to extend an existing
filesystem, the logical volume cannot be striped.

3. Change the entry for /work in the file /etc/fstab to read:

/dev/dsk/lv0 /work efs rw,raw=/dev/rdsk/lv0 0 0

4. Unmount the /work filesystem:

umount /work

5. Run the mklv command with the device name of the logical volume as an argument
to create the logical volume:

mklv -f lv0

6. Run lvck to check the new logical volume:

lvck /dev/rdsk/lv0

7. Grow the filesystem into the logical volume with the growfs command:

growfs /dev/rdsk/lv0

8. Run fsck on the expanded filesystem:

fsck /dev/rdsk/lv0

9. Mount the logical volume:

mount /work

You can repeat this expansion process indefinitely. You can always add a new disk, add
its name to the lvtab entry, and then rerun mklv and growfs to further expand the
filesystem.

Converting Filesystems on the System Disk From EFS to XFS

89

Converting Filesystems on the System Disk From EFS to XFS

Caution: The procedure in this section can result in the loss of data if it is not performed
properly. It is recommendedonly for experienced IRIX system administrators.

This section explains the procedure for converting filesystems on the system disk from
EFS to XFS. Some systems have two filesystems on the system disk, the Root filesystem
(mounted at /) and the Usr filesystem (mounted at /usr). Other systems have a single,
combined Root and Usr filesystem mounted at /. This procedure covers both cases but
assumes that neither lv nor XLV logical volumes are in use on the system disk. The basic
procedure for converting a system disk is:

1. Load the miniroot.

2. Do a complete dump of filesystems on the system disk.

3. Repartition the system disk if necessary.

4. Create one or two new, empty XFS filesystems.

5. Restore the files from the filesystem dumps.

6. Reboot the system.

During this procedure, you can repartition the system disk if needed. For example, you
can convert from separate Root and Usr filesystems to a single, combined filesystem, or
you can resize partitions to make the root partition larger and the usr partition smaller.
See the section “Disk Repartitioning” in this chapter for more information.

The early steps of this procedure ask you to identify the values of various variables,
which are used later in the procedure. You may find it helpful to make a list of the
variables and values for later reference. Be sure to perform only the steps that apply to
your situation. Perform all steps as superuser.

Caution: It is very important to follow this procedure as documented without giving
additional inst or shell commands. Unfortunately, deviations from this procedure, even
changing to a different directory or going from the inst shell to an inst menu when not
directed to, can have very severe consequences from which recovery is difficult.

90

Chapter 4: Creating and Growing Filesystems

1. Review the subsections within the section “Planning for XFS Filesystems” in this
chapter to verify that you are ready to begin this procedure.

2. Verify that your backups are up to date. Because this procedure temporarily
removes all files from your system disk, it is important that you have a complete set
of backups that have been prepared using your normal backup procedures. You will
make a complete dump of the system disk starting at step 11, but you should have
your usual backups in addition to the backup made during this procedure.

3. Use prtvtoc to get the device name of the root disk partition, rootpartition. For
example:

prtvtoc

Printing label for root disk

* /dev/rdsk/dks0d1s0 (bootfile "/unix")

...

The bootfile line contains the raw device name of the root disk partition, which is
/dev/rdsk/dks0d1s0 in this example. rootpartition is the block device name, which is
/dev/dsk/dks0d1s0 in this example.

4. If the system disk has separate Root and Usr filesystems, use the output of prtvtoc in
the previous step to figure out the device name of the usr partition. This is the value
of the variable usrpartition, which is used later in this procedure. Look for the line
that shows a mount directory of /usr:

Partition Type Fs Start: sec (cyl) Size: sec (cyl) Mount Directory

...

6 efs yes 116725 (203) 727950 (1266) /usr

The usr partition number is shown in the first column of this line; it is 6 in this
example. To determine the value of usrpartition, replace the final digit in rootpartition
with the usr partition number. For this example, usrpartition is /dev/dsk/dks0d1s6.

5. If you are using a tape drive as the backup device, use hinv to get the controller and
unit numbers (tapecntlr and tapeunit) of the tape drive. For example:

hinv -c tape

Tape drive: unit 2 on SCSI controller 0: DAT

In this example, tapecntlr is 0 and tapeunit is 2.

Converting Filesystems on the System Disk From EFS to XFS

91

6. If you are using a disk drive as your backup device, use df to get the device name
(backupdevice) and mount point (backupfs) of the partition that contains the
filesystem where you plan to put the backup. For example:

df

Filesystem Type blocks use avail %use Mounted on

/dev/root efs 1992630 538378 1454252 27% /

/dev/dsk/dks0d3s7 efs 3826812 1559740 2267072 41% /disk3

/dev/dsk/dks0d2s7 efs 2004550 23 2004527 0% /disk2

The filesystem mounted at /disk2 has plenty of disk space for a backup of the system
disk (/ uses 538,378 blocks, and /disk2 has 2,004,527 blocks available). The
backupdevice for /disk2 is /dev/dsk/dks0d2s7 and the backupfs is /disk2.

7. Create a temporary copy of /etc/fstab called /etc/fstab.xfs and edit it with your favorite
editor. For example:

cp /etc/fstab /etc/fstab.xfs

vi /etc/fstab.xfs

Make these changes in /etc/fstab.xfs:

• Replace efs with xfs in the line for the Root filesystem, /, if there is a line for
the Root filesystem.

• If there is no line for the Root filesystem, add this line:

/dev/root / xfs rw,raw=/dev/rroot 0 0

• If Root and Usr are separate filesystems and will remain so, replace efs with
xfs in the line for the Usr filesystem.

• If Root and Usr have been separate filesystems, but the disk will be
repartitioned during the conversion procedure so that they are combined,
remove the line for the Usr filesystem.

8. Shut down your workstation using the shutdown command or the “System
Shutdown” item on the System toolchest. Answer prompts as appropriate to get to
the five-item System Maintenance Menu.

9. Bring up the miniroot from system software CDs or a software distribution
directory.

10. Switch to the shell prompt in inst:

Inst> sh

92

Chapter 4: Creating and Growing Filesystems

11. Create a full backup of the Root filesystem by giving this command:

/root/sbin/dump 0uCf tapesize dumpdevice rootpartition

tapesize is the tape capacity (it’s used for backup to disks, too) and dumpdevice is the
appropriate device name for the tape drive or the name of the file that will contain
the dump image. Table 4-1 gives the values of tapesize and dumpdevice for different
tape drives and disk. <tapecntlr> and <tapeunit> in Table 4-1 are tapecntlr and
tapeunit from step 5 in this section.

12. If Usr is a separate filesystem, insert a new tape (if you are using tape), and create a
full backup of the Usr filesystem by giving this command:

/root/sbin/dump 0uCf tapesize dumpdevice usrpartition

tapesize is the tape capacity (it’s used for backup to disks, too) and dumpdevice is the
appropriate device name for the tape drive or the name of the file that will contain
the dump image. Table 4-1 gives the values of tapesize and dumpdevice for different
tape drives and disk.

13. Exit out of the shell:

exit

...

Inst>

14. If you do not need to repartition the system disk, skip to step 18.

Table 4-1 dump Arguments for Filesystem Backup

Backup Device tapesize dumpdevice

Disk 2m Use /root/backupfs/root.dump for the Root filesystem and
/root/backupfs/usr.dump for the Usr filesystem

DAT tape 2m /dev/rmt/tps<tapecntlr>d<tapeunit>nsv

DLT tape 10m /dev/rmt/tps<tapecntlr>d<tapeunit>nsv

EXABYTE™ 8mm
model 8200 tape

2m /dev/rmt/tps<tapecntlr>d<tapeunit>nsv

EXABYTE 8mm
model 8500 tape

4m /dev/rmt/tps<tapecntlr>d<tapeunit>nsv

QIC cartridge tape 150k /dev/rmt/tps<tapecntlr>d<tapeunit>ns

Converting Filesystems on the System Disk From EFS to XFS

93

15. To repartition the system disk, use the standalone version of fx. This version of fx is
invoked from the Command Monitor, so you must bring up the Command Monitor.
To do this, quit out of inst, reboot the system, shut down the system, then request
the Command Monitor. An example of this procedure is:

Inst> quit

...

Ready to restart the system. Restart? { (y)es, (n)o, (sh)ell, (h)elp }: yes

...

login: root

halt

...

System Maintenance Menu

...

Option? 5

Command Monitor. Type "exit" to return to the menu.

>>

On systems with a graphical System Maintenance Menu, choose the last option,
Enter Command Monitor, instead of choosing option 5.

16. Boot fx and repartition the system disk so that it meets your needs. The example
below shows how to use fx to switch from separate root and usr partitions to a
single root partition.

>> boot stand/fx

84032+11488+3024+331696+26176d+4088+6240 entry: 0x89f97610

114208+29264+19536+2817088+60880d+7192+11056 entry: 0x89cd31c0

Currently in safe read-only mode.

Do you require extended mode with all options available? (no) <Enter>

SGI Version 5.3 ARCS Dec 14, 1994

fx: "device-name" = (dksc) <Enter>

fx: ctlr# = (0) <Enter>

fx: drive# = (1) <Enter>

...opening dksc(0,1,0)

...controller test...OK

Scsi drive type == SGI SEAGATE ST31200N8640

----- please choose one (? for help, .. to quit this menu)-----

[exi]t [d]ebug/ [l]abel/ [a]uto

[b]adblock/ [exe]rcise/ [r]epartition/ [f]ormat

fx> repartition/rootdrive

fx/repartition/rootdrive: type of data partition = (xfs) <Enter>

Warning: you will need to re-install all software and restore user data

from backups after changing the partition layout. Changing partitions

94

Chapter 4: Creating and Growing Filesystems

will cause all data on the drive to be lost. Be sure you have the drive

backed up if it contains any user data. Continue? yes

----- please choose one (? for help, .. to quit this menu)-----

[exi]t [d]ebug/ [l]abel/ [a]uto

[b]adblock/ [exe]rcise/ [r]epartition/ [f]ormat

fx> exit

17. Load the miniroot again, using the same procedure you used in step 9.

18. Make an XFS filesystem for Root:

Inst> admin mkfs /dev/dsk/dks0d1s0

Unmounting device “/dev/dsk/dks0d1s0” from directory “/root”.

Make new file system on /dev/dsk/dks0d1s0 [yes/no/sh/help]: yes

About to remake (mkfs) file system on: /dev/dsk/dks0d1s0

This will destroy all data on disk partition: /dev/dsk/dks0d1s0.

 Are you sure? [y/n] (n): y

 Do you want an EFS or an XFS filesystem? [efs/xfs]: xfs

 Block size of filesystem 512 or 4096 bytes? 4096

Doing: mkfs -b size=4096 /dev/dsk/dks0d1s0

meta-data=/dev/rdsk/dks0d1s0 isize=256 agcount=8, agsize=31021 blks

data = bsize=4096 blocks=248165

log =internal log bsize=4096 blocks=1000

realtime =none bsize=4096 blocks=0, rtextents=0

Mounting file systems:

NOTICE: Start mounting filesystem: /root

NOTICE: Ending clean XFS mount for filesystem: /root

 /dev/miniroot on /

 /dev/dsk/dks0d1s0 on /root

Re-initializing installation history database

Reading installation history .. 100% Done.

Checking dependencies .. 100% Done.

Converting Filesystems on the System Disk From EFS to XFS

95

19. Switch to the shell prompt in inst:

Inst> sh

20. If you made the backup on disk, create a mount point for the filesystem that
contains the backup and mount it:

mkdir /backupfs
mount backupdevice /backupfs

21. If you made the backup on tape, restore all files on the Root filesystem from the
backup you made in step 11 by putting the correct tape in the tape drive and giving
these commands:

cd /root

mt -t /dev/rmt/tpstapecntlrdtapeunit rewind

restore rf dumpdevice

You may need to be patient while the restore is taking place; it normally doesn’t
generate any output and it can take a while.

22. If you made the backup on disk, restore all files on the Root filesystem from the
backup you made in step 11 by giving these commands:

cd /root

restore rf /backupfs/root.dump

23. If you made a backup of the Usr filesystem in step 12 on tape, restore all files in the
backup by putting the correct tape in the tape drive and giving these commands:

cd /root/usr

mt -t /dev/rmt/tpstapecntlrdtapeunit rewind

restore rf dumpdevice

24. If you made a backup of the Usr filesystem in step 12 on disk, restore all files in the
backup by giving these commands:

cd /root/usr

restore rf /backupfs/usr.dump

25. Move the new version of /etc/fstab that you created in step 7 into place (the first
command, which is optional, saves the old version of /etc/fstab):

mv /root/etc/fstab /root/etc/fstab.old

mv /root/etc/fstab.xfs /root/etc/fstab

96

Chapter 4: Creating and Growing Filesystems

26. Exit from the shell and inst and restart the system:

exit

#

Calculating sizes .. 100% Done.

Inst> quit

...

Ready to restart the system. Restart? { (y)es, (n)o, (sh)ell, (h)elp }: yes

Preparing to restart system ...

The system is being restarted.

Converting a Filesystem on an Option Disk From EFS to XFS

Caution: The procedure in this section can result in the loss of data if it is not performed
properly. It is recommended only for experienced IRIX system administrators.

This section explains how to convert an EFS filesystem on an option disk (a disk other
than the system disk) to XFS. It assumes that neither lv nor XLV logical volumes are used.
You must be superuser to perform this procedure.

1. Review the subsections within the section “Planning for XFS Filesystems” in this
chapter to verify that you are ready to begin this procedure.

2. Verify that your backups are up to date. Because this procedure temporarily
removes all files from the filesystem you convert, it is important that you have a
complete set of backups that have been prepared using your normal backup
procedures. You will make a complete backup of the system disk in step 4, but you
should have your usual backups in addition to the backup made during this
procedure.

3. Identify the device name of the partition, which is the variable partition, where you
plan to create the filesystem. For example, if you plan to use partition 7 (the entire
disk) of an option disk on controller 0 and drive address 2, partition is
/dev/dsk/dks0d2s7. For more information on determining partition (also known as a
special file), see the dks(7M) reference page.

Converting a Filesystem on an Option Disk From EFS to XFS

97

4. Back up all files on the disk partition to tape or disk because they will be destroyed
by the conversion process. You can use any backup command (Backup, bru, cpio, tar,
and so on) and back up to a local or remote tape drive or a local or remote disk. For
example, the command for dump for local tape is:

dump 0uCf tapesize dumpdevice partition

tapesize is the tape capacity (it’s used for backup to disks, too) and dumpdevice is the
device name for the tape drive. Table 4-1 gives the values of tapesize and dumpdevice
for different local tape drives and disk. You can get the values of tapecntlr and
tapeunit used in the table from the output of the command hinv –c tape.

5. Unmount the partition:

umount partition

6. Use the mkfs command to create the new XFS filesystem:

mkfs -b size=blocksize -l size=logsize partition

blocksize is the filesystem block size (see the section “Choosing the Filesystem Block
Size and Extent Size” in this chapter) and logsize is the size of the area dedicated to
log records (see the section “Choosing the Log Type and Size” in this chapter).
Example 4-1 shows an example of this command line and its output.

7. Mount the new filesystem with this command:

mount partition mountdir

8. In the file /etc/fstab, in the entry for partition, replace efs with xfs. For example:

partition mountdir xfs rw,raw=rawpartition 0 0

rawpartition is the raw version of partition.

9. Restore the files to the filesystem from the backup you made in step 4. For example,
if you gave the dump command in step 4, the commands to restore the files from
tape are:

cd mountdir
mt -t device rewind

restore rf dumpdevice

The value of device is the same as dumpdevice without nsv or other letters at the end.

You may need to be patient while the restore is taking place; it doesn’t generate any
output and it can take a while.

